If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10=105
We move all terms to the left:
x^2+10-(105)=0
We add all the numbers together, and all the variables
x^2-95=0
a = 1; b = 0; c = -95;
Δ = b2-4ac
Δ = 02-4·1·(-95)
Δ = 380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{380}=\sqrt{4*95}=\sqrt{4}*\sqrt{95}=2\sqrt{95}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{95}}{2*1}=\frac{0-2\sqrt{95}}{2} =-\frac{2\sqrt{95}}{2} =-\sqrt{95} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{95}}{2*1}=\frac{0+2\sqrt{95}}{2} =\frac{2\sqrt{95}}{2} =\sqrt{95} $
| 10x+20=5x+30 | | -9(j+19)=-90 | | 1/3n-10=0 | | 4n-4n-1=24 | | −14⋅|x|+1,75=−3 | | -1+-3c=-13 | | 3x(3x-2)+7=6 | | x/5+x/2=28 | | r-66/3=6 | | 5x-3(4x+7)=15 | | 20=2(l+4) | | 4x–12=15 | | 4x–12=154x–12=15 | | 55=13+7p | | 1−2x=−9 | | 4t-8=24 | | 4x+14=2x-10 | | -16=8(w-91) | | 2x-24=-x2 | | 2(x-5)=1/5(6x+4) | | 5+2(x−3)=3x | | x2=2x2-81 | | 2(-2y+6)=-8 | | 11x+10=9x-20 | | -4(u+27)=40 | | z^2-78z-47=0 | | 2x2=x+10 | | 6/7x=35 | | 5(x+11)2=-50 | | 6x2-23x=18 | | 4x2-120=40 | | 3x2-42x+78=0 |